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Abstract: Web log mining technique is the very useful technique of extracting useful information from server logs that is use 
Web usage mining is the process of finding out what users are looking for on the Internet. The mining frequent patterns from 
web log data can help to optimize the structure of a web site and improve the performance of web servers. Users can also 
benefit from these frequent patterns from Web. Many efforts have been done to mine frequent patterns efficiently. Apriori 
and its variants and pattern-growth approach are the two representative frequent pattern mining approaches for candidate-
generation-and-test approach. In this article we have conducted extensive experiments on real world web log data to analyze 
the characteristics of web logs and the behaviors of these two approaches on web log data. In this paper we propose a new 
Apriori algorithm for Frequent Pattern Mining for web log data. Our experimental results show that proposed algorithm can 
significantly improve the performance on frequent pattern mining on web log data. 
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Introduction 
Web content used to be generated by a well-known source like a company, a service provider or a private person and 
presented to the users of the internet communication. It has changed, such that now, 'well-known' sources, which are a variety 
of open source and commercial organizations, provide tools to make use of the described paradigm by allowing users to 
generate content and at the same time providing a web-portal or something similar, in which this content may be presented by 
the creators to other users. So these platforms have reached a very high popularity and are heavily used, the video platform 
You-tube, the social network Face-book and the weblog platform Word-press just being among the most famous and 
intensely used ones. This thesis focuses on the latter type of Web 2.0 applications. Weblog is not a tool or application as 
such: It is a website with separate articles, displayed in reverse timely order. The weblog portals platforms equip users with 
the ability to run such websites without having the necessary technical skills to do so by them. This opportunity has caused a 
massive use of blogs by all types of people and for all kinds of topics. The use of blogs has increased so largely, that Techno 
ratio recently determined the total number of new blog articles to an astounding value of ten new articles per second [1-2]. In 
this paper we designed a Web log mining system for frequent item set mining and its visualization using modified Apriori 
hash tree algorithm. 
 
Background Techniques 
 
Web Usage Mining 
Web usage mining is the process of extracting useful information from server logs whose use Web usage mining is the 
process of finding out what users are looking for on the Internet. Many users might be looking at only textual data and some 
others might be interested in multimedia data. The Web Usage Mining is the application of data mining techniques to 
discover interesting usage patterns from Web data in order to understand and better serve the needs of Web-based 
applications. The usage data captures the identity or origin of Web users along with their browsing behavior at a Web site. 
The web usage mining itself can be classified further depending on the kind of usage data considered: 

1. Web Server Data: The user logs are collected by the Web server. Data includes IP address and page reference and 
access time. 

2. Application Server Data: Commercial application servers have significant features to enable e-commerce 
applications to be built on top of them with little effort. The key feature is the ability to track various kinds of 
business events and log them in application server logs. 

3. Application Level Data: New kinds of events can be defined in an application; also logging can be turned on for 
them thus generating histories of these specially defined events and It must be noted, however, that many end 
applications require a combination of one or more of the techniques applied [3-4]. 

 
Web Structure Mining 
Web structure mining is the process of using graph theory to analyze the node and connection structure of a web site. The 
type of web structural data and web structure mining can be divided into two kinds: 
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1. Extracting patterns from hyperlinks in the web: a hyperlink is a structural component that connects the web page to a 
different location. 
2. Mining the document structure: analysis of the tree-like structure of page structures to describe HTML or XML tag usage. 
 
Event Logs 
In general an event log records the events that occur in a certain process for a certain case. Many of the information systems 
as discussed in the previous section log events in an event log. The process definition specifies which activities should be 
executed in structure. When a new case is started a new instance of the process is generated which is called a process 
instance. The process instance keeps track of the current status of the case in the process. This process instance might leave a 
trace of events that are executed for that case in the event log. Each event is an instance of a certain activity as defined within 
the process definition. Furthermore, events are ordered to indicate in which sequence activities have occurred. In most cases 
this order is defined by the date and time or timestamp attribute of the event. Sometimes the start and stop information is 
recorded of a single activity. This is recorded in the event type attribute of the event. Other common attribute is the resource 
that executed the event which can be a user of the system, this system itself or an external system. Orther attributes can be 
stored within the event log related to the event for example the data attributes added or changed Unfortunately, every 
information system logs not events in the described way. Information about the relation between events and activities or even 
between traces and process instances is often not recorded. Main reason for this is that the event log is not seen as a recording 
of the execution of a process by system designers. Some systems the event log is used for debugging errors encountered in 
the system [3-6]. 
 
Server Log 
A server log is a log file or several files automatically created and maintained by a server of activity performed by it. An 
example is a web server log which maintains a history of page requests. The W3C maintains a standard format means 
the Common Log Format for web server log files, on other hand proprietary formats exist. Most recent entries are typically 
appended to the end of the file. The request information about, including client IP address, and request date/time, bytes 
served, user agent, page requested, HTTP code, and referrer are typically added. The data can be combined into a single file, 
separated into distinct logs, such as an error log, access log, or referrer log. Server logs typically do not collect user-specific 
information. 
These files are usually not accessible to general Internet users, only to the webmaster or other administrative user. Statistical 
analysis of the server log may be used to examine traffic patterns by time of day, day of week, referrer, or user agent. The 
efficient web site administration, adequate hosting resources and fine tuning of sales efforts can be aided by analysis of the 
web server logs. The marketing departments of any organization that owns a website should be trained to understand these 
powerful tools [5-6]. 
 
Frequent Itemset Mining 
Use the term frequent itemset for a set S that appears in at least fraction s of the baskets," where is some chosen constant, 
typically 0.01 or 1%. We assume data is too large to fit in main memory. Either it is stored in a RDB, say as a relation 
Baskets (BID; item) or as a at file of records of the form (BID; item1; item2... item n). When evaluating the running time of 
algorithms: 
 Count the number of passes through the data. Since the principal cost is often the time it takes to read data from disk, the 
number of times we need to read each datum is often the best measure of running time of the algorithm. There is a key 
principle, called mono-tonicity or the a-priori trick that helps us find frequent itemsets: 
If a set of items S is frequent (i.e., appears in at least fraction s of the baskets), then every subset of S is also frequent [7-8]. 
 
Mining closed and maximal frequent itemsets 
A major challenge in mining frequent patterns from a large data set is the fact that such mining often generates a huge 
number of patterns satisfying the min-sup threshold, especially when min-sup is set low. This is because if a pattern is 
frequent, each of its sub-patterns is frequent as well. Large pattern will contain an exponential number of smaller and 
frequent sub-patterns. For overcome this problem, closed frequent pattern mining and maximal frequent pattern mining was 
proposed. 
A pattern α is a closed frequent pattern in a data set D if α is frequent in D; there exists no proper super-pattern β such that β 
has the same support as α in D. A pattern α is a maximal frequent pattern (or max-pattern) in set D if α is frequent, and there 
exists no pattern β such that α ⊂ β and β is frequent in D. For the same min-sup threshold, the set of closed frequent patterns 
contains the complete information regarding to its corresponding frequent patterns; whereas the set of max-patterns, though 
more compact, usually have not contain the complete support information regarding to its corresponding frequent patterns [8-
9]. 
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Association Rules and Frequent Itemsets 
The market-basket problem assumes we have some large number of items. Customers will their market baskets with some 
subset of the items, we get to know what items people buy together, even if we don't know who they are marketers use this 
information to position items, and control the way a typical customer traverses the store. 
In addition to the marketing usage, the same sort of question has the following uses: 
1. Baskets = documents; items = words. Words appearing frequently together in documents may represent phrases. It can be 
used for intelligence gathering. 
2. Baskets = sentences, items = documents. Two documents with many of the same sentences could represent plagiarism or 
mirror sites on the Web [8-10]. 
 
Proposed Techniques 
 
Web Log Mining System 
We designed a Web log mining system for frequent item set mining and its visualization. The input and output of the system 
is Web log files as well as visualized patterns or text reports. The whole system includes: 
 
Generation of Log file: The quality of the patterns discovered in web usage mining process highly depends on the quality of 
the data used in the mining processes. When the web browser traces the web pages and stores the Server log file. The web 
usage data contains information about the Internet addresses of web users with their navigational behavior the basic 
information source for web usage. 
 
Web Server Data: When any user agent hits an URL in a domain, the information related to that operation is recorded in an 
access log file. The data processing task, the web log data can be preprocessed in order to obtain session information for all 
users. Access log file on the server side contains log information of user that opened a session. These records have seven 
common fields, which are: a. User’s IP address, b. Access date and time, c. Request method (GET or POST), d. URL of the 
page accessed, e. Transfer protocol (HTTP 1.0, HTTP 1.1,), f. Success of return code. g. Number of bytes transmitted. 
 
Data Preprocessing: This is the phase where data are cleaned from noise by overcoming the difficulty of recognizing 
different users and sessions, in order to be used as input to the next phase of pattern discovery. Data preprocessing phase 
always involves data cleaning and user identification and session identification. 
 
1) Data Cleaning. In our system, we use server logs in Common Log Format. We examine Web logs and remove irrelevant or 
redundant items like image, sound, video files which could be downloaded without an explicit user request. Other removal 
items include HTTP errors, records created by crawlers, etc., which can’t truly reflect users’ behavior. 
2) User Identification. To identify the users, the simple method is requiring the users to identify themselves, by logging in 
before using the web-site or system. Other approach is to use cookies for identifying the visitors of a web-site by storing a 
unique ID. However, these two methods are not general enough because they depend on the application domain and the 
quality of the source data, for this in our system we only set them as an option. Detail should be implemented according to 
different application domains. 
We have implemented a more general method to identify user. We have three criteria: 
(1) A new IP indicates a new user. 
(2) Same IP but different Web browsers, or different operating systems, in terms of type and version, means a new user. 
(3) Suppose the topology of a site is available, if a request for a page originates from the same IP address like other already 
visited pages, and indirect hyperlink exists between the pages, it indicates a new user.  
3) Session Identification. To identify the user sessions is also very important because it will largely affects the quality of 
pattern discovery result. A user session can be defined as a set of pages visited by the same user within the duration of one 
particular visit to a web-site. 
 
Pattern Mining: While various mining algorithms could be incorporated into the system to mine different types of patterns, 
currently, we only implemented sequential pattern mining on Web log data. We plan to add other part in future work. 
 
Frequent Itemset Analysis: In this phase, the mined patterns which in great numbers need to be evaluated by end users in an 
easy and interactive way using improved Apriori algorithm 
 
Proposed Improved Apriori Algorithm 
The proposed algorithm is based on the Hash tree Algorithm steps of frequent item sets and rule generation phases. Frequent 
item sets are generated in two steps. The first step all possible combination of items, called the candidate item set (Ck) is 
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generated. The second step, support of each candidate item set is counted and those item sets that have support values greater 
than the user-specified minimum support from the frequent item set (Fk). In this algorithm the database is scanned multiple 
times and the number of scans cannot be determined in advance.  
Suppose one of the large item sets is Lk, Lk = {I1, I2, …, Ik}, association rules with this item sets are generated in the 
following way the first rule is {I1, I2, … , Ik-1} {Ik}, by checking the confidence this rule can be determined as interesting or 
not. Next the other rule are generated by deleting the last items in the antecedent and inserting it to the consequent, after then 
the confidences of the new rules are checked to determine the processes iterated until the antecedent becomes empty. So the 
second sub problem is quite straight forward, many of the researches focus on the first sub problem. Apriori algorithm finds 
the frequent sets L in Database D. A k-item set is an item set with exactly k item in it. 
An association rule is about the relationship between two disjoint item sets, X and Y. It is denoted as X => Y. It presents the 
pattern  When X occurs, and Y also occurs.  
Association rules not represent any sort of causality, correlation between the two items sets. 
X => Y does not mean that X causes Y. There is no causality. 
X => Y can imply different meaning than Y=>X, unlike correlation 
Support for an item set X in a transactional database D is defined as count (X) / |D| 
For an association rule X =>Y, we can calculate 
Support(X => Y) = support (XY) = support(X union Y). 
Confidence(X => Y) = support (XY) / support(X). 
Support (S) and Confidence (C) can also be related to join probabilistic and conditional probabilities as follows 
Support(X =>Y) = P(XY). Confidence (X=>Y) 
SET k = 1; 
Find frequent item set, from the set of all candidate item sets;  
Ck: Candidate item set of size, Lk: frequent item set of size k; 
Scan D and count each item set in C, if the count is greater than min-Supp, and then add that itemset to Lk 
For k = 1, C1 = all item sets of length = 1 
For k > 1, generate Ck from Lk-1 as follows: 
 
The join step 
Ck = k-2 way join of Lk-1 with itself. 
If both {a1,..,ak-2, ak-1} & {a1 ,.., ak-2, ak} are in Lk-1, then add {a1 ,..,ak-2, ak-1, ak} to Ck 
Remove {a1 , …,ak-2, ak-1, ak}, if it contains a non-frequent (k-1) subset. 
For every non-empty subset A of X 
Let B = X - A. 
A => B is an association rule if Confidence (A => B) >= min-Conf. 
Where, confidence (A => B) = support (AB) / support (A), and 
Support (A => ) B .) =Support (AB) 
To overcome boundary problem, Find out the min support, Scan D and count each itemset in Ck, 
if the count is greater than minSupp, then add that itemset to Lk 
For k = 1, C1 = all item sets of length = 1, For k > 1, generate Ck from Lk-1 as follows: 
Ck = k-2 way join of Lk-1 with itself. 
If both {a1,..,ak-2, ak-1} & {a1,.., ak-2, ak} are in Lk-1, then add {a1,..,ak-2, ak-1, ak} to Ck 
The items are always stored in the sorted order. 
 
The prune step 
Remove {a1, …,ak-2, ak-1, ak}, if it contains a non-frequent (k-1) subset. For every non-empty subset A of X 
Let B = X - A. 
A => B is an association rule if Confidence (A => B) >= min-Conf. 
Where, confidence (A => B) = support (AB) / support (A), and Support (A =>B.) = Support 
(AB) 
One way to improve efficiency of the APRIORI would be to Prune without checking all k-1 subsets 
Join without looping over the entire set, Lk-1. One way to improve efficiency of the Apriori would be to prune without 
checking all k-1 subsets  
Join without looping over the entire set, Lk-1. 
 
Improved Apriori Algorithm 
One way to improve efficiency of the Apriori as follows 
Stepp1. Prune without checking all k-1 subsets. 
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Step2. Join without looping over the entire set, Lk-1. 
Step3. Speed up searching and matching. 
Step4. Reduce the number of transactions a kind of instance selection. 
Step5. Reduce the number of passes over data on disk. 
Step6. Reduce number of subsets per transaction that must be considered. 
Step7. Reduce number of candidates this can be done by using hash trees 
A Hash tree stores all candidate k-item sets and their counts. Root is empty and its children are the frequent 1-itemsets. Any 
node at depth = k will denote and frequent k-itemset. An example for an hash tree for C2 = 11, 14, 16, 26, 27, 33 is shown 
below  
{}      **root 
/1  |2  \3   **edge and label 
/2  |3  \5  /3  \5  /5 
[11:][14:][16:] [26:][27:] [33:]   **leaves 
 
An internal node v at level n contains, bucket pointers. From these we tell which branch is the next one to be traversed. Hash 
of the mth item is used to decide this. 
 
Join step using Hash Tree 
The frequent k-1 item sets have common parents, should be considered for the joining step and checking all k-1 item sets in 
Lk-1is avoided. 
 
Prune step using Hash Tree 
To determine if a k-1 itemset is frequent, we look only for those item sets that have common parents, and thus avoid going 
through all k-1 item sets in Lk-1.To overcome crisp boundary problem, find out the min-supp and Scan D and count each 
itemset in Ck, if the count is greater than min Supp, after then add that itemset to Lk 
For k = 1, C1 = all item sets of length = 1, For k > 1, generate Ck from Lk-1 as follows: 
The join step: 
Ck = k-2 way join of Lk-1 with itself. If both {a1,..,ak-2, ak-1} & {a1,.., ak-2, ak} are in Lk-1, then add{a1,..,ak-2, ak-1, ak} 
to Ck The items are mainly stored in the sorted order. 
The prune step: 
Remove {a1, …,ak-2, ak-1, ak}, if it contains a non-frequent (k-1) subset. For every non-empty 
subset A of X Let B = X - A. 
A => B is an association rule if Confidence (A => B) >= min-Conf. Where, confidence (A => B) >=support (AB) / support 
(A), and Support (A =>)B .)=Support (AB) the way to improve efficiency of the APRIORI would be to Prune not checking 
all k-1 subsets and Join without looping over the entire set, Lk-1. 
Now the minimum support value will have the crisp boundary problem that is the output value will not be optimized one and 
the efficiency will be low to make it optimized and to improve the efficiency we have done the following modifications ,i.e. 
from the minimum support value from the Apriori hash tree, divide the minimum support by 50% of the total item set, since 
we calculate the min support from Apriori hash tree the result in ascending so the optimized result will not be behind the 50% 
region. Now we have obtained the optimized value compare to the previous Apriori algorithm. Thus we can overcome the 
crisp boundary problem by our modified algorithm and we have improved the efficiency by our algorithm. 
 
Results Analysis 
There are many major contributions that are involved in this work with respect to Information retrieval from the web log. 
First, this work focuses on link filtering and content filtering to eliminate the duplicate items from the search results. It has 
knowledge based summarizer on keywords and synonyms and provides a back link reference for tracking the facts of the 
summary. The quick browse our modified algorithm proposed in this work helps in faster access to the relevant information 
in the web mining search. Finally, the whole system has been developed using knowledge based intelligent components with 
rules so that it can be embedded in a collaborative environment for personalization and effective information retrieval. 
Figure 1 represents the efficiency of the apriori hash tree algorithms (blue line) and proposed modified apriori hash tree with 
algorithm (red line) comparison graph. Our proposed techniques are better efficient than existing algorithm. 
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Fig 1 Efficiency of two algorithms 
 

Conclusion 
Our proposed algorithm concept is very simple in comparison of existing web miner which is used to produce web-log. Due 
to simplicity our proposed technique is high efficient. In the Proposed technique apply Hash based A-priori with some 
advance features like Bit shift operator on web-log for finding from web-log .The proposed method gives efficient results in 
comparison to existing algorithm. With the advances in technology it is of vital importance that our proposed system is robust 
enough to withstand the advances in technology. The more an A-priori technique relies on mathematics, the less the 
robustness. The time efficiency of our proposed technique measures in ms to finds URL from Web-log it is very good in 
comparison of existing algorithm. 
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